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Abstract. Increasingly, organizations are adopting ontologies to describe their 
large catalogues of items. These ontologies need to evolve regularly in response 
to changes in the domain and the emergence of new requirements. An important 
step of this process is the selection of candidate concepts to include in the new 
version of the ontology. This operation needs to take into account a variety of 
factors and in particular reconcile user requirements and application 
performance. Current ontology evolution methods focus either on ranking 
concepts according to their relevance or on preserving compatibility with existing 
applications.  However, they do not take in consideration the impact of the 
ontology evolution process on the performance of computational tasks – e.g., in 
this work we focus on instance tagging, similarity computation, generation of 
recommendations, and data clustering. In this paper, we propose the Pragmatic 
Ontology Evolution (POE) framework, a novel approach for selecting from a 
group of candidates a set of concepts able to produce a new version of a given 
ontology that i) is consistent with the a set of user requirements (e.g., max number 
of concepts in the ontology), ii) is parametrised with respect to a number of 
dimensions (e.g., topological considerations), and iii) effectively supports 
relevant computational tasks. Our approach also supports users in navigating the 
space of possible solutions by showing how certain choices, such as limiting the 
number of concepts or privileging trendy concepts rather than historical ones, 
would reflect on the application performance. An evaluation of POE on the real-
world scenario of the evolving Springer Nature taxonomy for editorial 
classification yielded excellent results, demonstrating a significant improvement 
over alternative approaches.  

Keywords: Ontology Evolution, Domain Ontologies, Bibliographic Data, 
Scholarly Data, Scholarly Ontologies. 

1 Introduction 

Increasingly, organizations are adopting ontologies to describe their large catalogues of 
items. Indeed, ontologies have proved to be very useful in the context of a variety of 
tasks [1], including the integration of data from different sources, domain reasoning, 
classification [2], generation of recommendations [3], cluster analysis [4], community 
detection [5], sentiment analysis, forecasting [6], and others. Naturally, ontologies need 
to be regularly maintained and need to evolve according to changes in the domain or 
new requirements from users or applications [7]. This process is called ontology 
evolution and it is a critical part of the ontology lifecycle. While the literature proposes 
a variety of frameworks for ontology evolution [8, 9, 10, 11], essentially most agree on 



 

three fundamental steps in the process: i) detection of the need for the evolution, ii) 
identification of candidate changes, and iii) validation and assessment of these changes, 
to ensure that the resulting ontology satisfies the given needs.  

Hence, in the first instance, the evolved ontology normally has to comply with a set 
of requirements, defined to ensure that the ontology remains compatible with the 
current workflow and usable by the relevant stakeholders.  

In the second instance, it is crucial to take into account the impact of the ontology 
evolution process on relevant applications. Ontologies are often used to enable semantic 
approaches to data mining, information filtering, trend detection, and other tasks [12], 
whose performance needs to be taken in consideration when creating a new version of 
the ontology.  Crucially, user needs and applications performance are sometimes in 
opposition. For example, a very comprehensive representation of items and their 
features would generally improve the performance of a recommender system, but users 
may prefer a less complex representation that it is easier to browse, memorize, maintain, 
and incorporate in their workflow.  

In the third instance, domain experts may have preferences about which concepts to 
privilege that should be considered in the process. For example, they may decide to 
privilege concepts which are currently trendier rather than historical ones, or those that 
are more represented in their internal catalogue, rather than considering the full domain.  

Finally, users need to be able to understand why a certain concept was selected or 
discarded and how this relates to the requirements, the user preferences, and the 
ontology support for some computational tasks.  

The motivating scenario for this work concerns the evolution of the internal 
taxonomy at Springer Nature, which is used for classifying books, journals, and other 
editorial products. Since this taxonomy is used by a lot of different users and software 
systems, the evolution process needs to take in consideration both user needs and the 
impact on applications. For instance, a recommender system for suggesting editorial 
products described by an ontology [13] would perform differently according to the 
ontology that it is using. In addition, the process need to be transparent, so that every 
change can be justified in light of these factors.  

Current solutions are not easily applicable to this problem. Most of the methods for 
selecting the concepts to be included in an evolving ontology address this task by 
ranking concepts according to a weight derived from information retrieval metrics [14, 
15], list of words [16], or online ontologies [11]. These solutions have the advantage of 
being generic, but present two significant limitations: i) they do not assess the impact 
of the new version of the ontology on the performance of the relevant applications, and 
ii) they ignore concept synergy, by weighting the relevance of single concepts rather 
than the overall impact of a combination of concepts. Some approaches do focus on 
preserving consistency between the ontology and the dependent applications [17, 18, 
19, 20, 21], however they do not consider the effect of the changes on the performance 
of computational tasks. 

In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a 
novel approach for selecting from a group of candidates a set of concepts able to 
produce an ontology that i) is consistent with the given requirements, ii) is parametrised 
with respect to a number of dimensions (e.g., topological considerations), and iii) 
supports effectively relevant computational tasks, such as instance tagging, similarity 
computation, generation of recommendations, and data clustering. POE supports users 
in navigating the space of possible solutions by showing how certain choices, such as 



 

limiting the number of concepts or privileging trendy concepts rather than historical 
ones, would reflect on the application performance. It also makes it easy to explain why 
a certain concept was included in the ontology on the basis of its contribution to the 
performance of a specific task. Finally, it selects the new concepts not only according 
to individual weights, but also considering their synergy with other concepts. 

The rest of the paper is organized as follows. In Section 2, we will present a 
motivating scenario involving the evolution of an editorial taxonomy at Springer 
Nature. In Section 3, we will review the literature regarding ontology evolution and, in 
particular, the selection of candidate concepts. In Section 4, we will discuss POE in 
details and in Section 5, we will evaluate it on a dataset of 1,218 Springer Nature books. 
Finally, in Section 6, we summarize the main conclusions and outline future directions 
of research. 

2 Motivating Scenario: Evolving Springer Nature Market Codes 

Springer Nature (SN) is one of the major academic publishing companies and has a vast 
catalogue of books, journals, and conference proceedings. Like  other companies in this 
space, it has its own editorial classification system, called Product Market Codes 
(PMC). PMC is a taxonomy of research fields that is used to tag editorial items with 
relevant topics, e.g., “Artificial Intelligence” or “Software Engineering”. The resulting 
metadata are then used for a variety of tasks, such as improving the discoverability of 
products in digital and physical libraries, supporting marketing decision, and detecting 
research trends. 

It is crucial to keep PMC up to date with the evolution of the research landscape at 
the right level of granularity. This is particularly challenging in the field of Computer 
Science, where new areas evolve constantly and taxonomies tend to become obsolete 
very quickly [22]. In the context of the collaboration between The Open University and 
Springer Nature [2, 13], we focused on the issue of supporting the evolution of the 
Computer Science portion of PMC, concentrating in particular on some branches that 
had become obsolete. 

 This work builds on our earlier research, which has produced new methods able to 
generate automatically taxonomies of research areas through large scale-mining of 
scholarly data. In particular, by applying the Klink-2 algorithm [22] on the Rexplore 
dataset [23], we generated the Computer Science Ontology (CSO) [24], a large-scale 
ontology of research topics in Computer Science, which includes about 26K topics 
linked by about 226K semantic relationships. CSO powers two tools used by SN for 
tagging and recommending books: Smart Topic Miner [2] and Smart Book 
Recommender [13].  

In accordance with the requirements provided by SN publishing editors, we focused 
on the evolution of the branches under five concepts of the original PMC taxonomy 
(“I21017-Artificial Intelligence (incl. Robotics)”, “I14029-Software Engineering”, and 
three others – see details in Section 5) that we mapped to nine CSO concepts (in the 
given example “Artificial Intelligence”, “Robotics”, “Software Engineering”, and 
“Software Design”). We then extracted all their sub-concepts producing 2,451 
candidate concepts. However, producing a new version of PMC with all of them, would 
cause the Computer Science portion of PMC to grow from 89 to 2,540 concepts. This 
is unfeasible for a variety of pragmatic reasons, including the fact that many books are 



 

still manually tagged and curated by editors. We thus needed to find a solution to the 
evolution of PMC, which ensured that it remained under a certain size. It was also 
crucial that the new version of the ontology would support effectively tasks such as 
generation of recommendations, data clustering, and so on. Finally, we would need to 
be able to produce a justification for the inclusion or the exclusion of a research topic.  

This is a typical real-world case in which the first two steps of the ontology evolution 
process, identifying the need for changes and producing candidate concepts, are 
relatively easy, since it exists a clear need (new fields in Computer Science are missing) 
and we already have a good selection of candidate concepts in CSO.  On the contrary, 
there was no clear solution for selecting a set of concepts that would comply with the 
requirements and support relevant applications. 

3 Related Work 

Most of the ontology evolution frameworks [7, 8, 9, 10] include a phase that regards 
the verification and selection of candidate changes or concepts to be included in the 
new version of the ontology. This step is labelled “change validation phase” in the 
framework of Stojanovic [8], “verification and approval” in Klein and Noy [9], 
“accepting and rejecting changes” in Noy [10], and it is split in two different phases 
labelled “validating changes” and “assessing the evolution impact” in the ontology 
evolution cycle proposed by Zablith [7]. 

Traditionally, the candidate changes are validated at three different levels [7]: i) 
formal properties-based validation, which uses formal techniques to preserve the 
consistency and coherence of the ontology, ii) domain base validation, which exploits 
domain information to assess the relevance of the candidate changes, and iii) 
application and usage impact, which measures the effects of the changes on data 
instances, dependent ontologies, and relevant applications [25]. POE works at the 
second and third levels, since it assesses the importance of concepts within a certain 
domain and it evaluates the effect of alternative ontologies on computational tasks.  

Approaches to domain base validation can be classified according to their focus, 
which can be either on domain relevance [14, 15, 16, 17, 26] or correctness [27]. 
Text2Onto [14], a well-known system for ontology learning, falls in the first category, 
since it weights the relevance of the candidate concepts by mean of information 
retrieval measures, such as Relative Term Frequency (RTF), TF-IDF, and the C-
value/NC-value method. SPRAT [15], a tool for automatic pattern-based ontology 
population, also uses TF-IDF to select the relevant terms that should be included in the 
ontology. Similarly to POE, they both focus on the inclusion of concepts or terms rather 
than entire statements. The DINO Framework [16], assesses the relevance of a set of 
candidate triples according to their Levenshtein distance from a set of wanted or 
unwanted words, specified by domain experts. The Evolva framework [11] measures 
the relevance of a statement by generating its ontological context from a set of online 
ontologies and comparing it to the evolving ontology. The DINAMO-MAS system [26] 
assesses relationships between terms by means of a confidence score that takes in 
consideration their lexico-syntactic patterns. Some other systems focus on assessing the 
correctness of statements. For instance, Sabou et al. [27] verify the correctness of the 
link between two concepts by exploiting the path connecting the concepts in online 
ontologies. Similarly to these solutions, POE aims to find the best set of concepts to be 



 

included in an evolved ontology. However, it also consider application performance 
and concept synergy.  

Some other approaches focus on assessing the impact of evolution on data instances 
[28, 29], applications [17, 18, 19, 20, 21, 30], and dependent ontologies [25]. Because 
of lack of space, we will focus our review on the first two categories. 

Qin and Atluri [28] propose a method to define and preserve the structural and 
semantic validity of data instances that are described by an evolving ontology. 
Similarly, Hartung et al. [29] introduce a generic framework for the study of the 
evolution of ontologies and ontology-related mappings. We also take into consideration 
instances and their mapping, but rather than checking their validity, we focus on the 
impact of their representations on the relevant tasks.  

Several approaches address the impact of the resulting ontology on dependent 
applications, however they focus mainly on preserving consistency and compatibility. 
For instance, Huang and Stuckenschmidt [17] present MORE, a system that uses 
temporal logic to detect the consequences of changes. Xuan et al. [18] introduce the 
floating version model, which preserves compatibility by not allowing a new version 
of the ontology to falsify axioms that were previously true. Wang et al. [19] propose 
another technique to maintain the consistency of dependent applications and suggest 
resolution strategies. Liang et al. [20] present a system that analyses the queries 
submitted by dependent applications, detects if the relevant entities where changed 
during the evolution process, and repairs broken queries. Similarly, Kondylakis and 
Plexousakis [21] propose a formal approach for identifying the impact of ontology 
evolution on queries and easing query migration. Finally, Groß et al. [30] introduce an 
approach for measuring the stability of a ontology and show how ontology evolution 
affected the level of significance of functional enrichment analyses in Biology. 
Differently from all these systems, POE focuses on the performance of dependent 
computational tasks rather than on consistency and compatibility, and aims to generate 
an ontology that can effectively support these tasks.   

4 The POE Framework 

4.1 Overview of POE 

The Pragmatic Ontology Evolution (POE) framework was designed to produce an 
ontology that complies with the given requirements and performs well on some input 
tasks, as well as supporting users in exploring the space of solutions. POE takes as input 
i) an ontology, ii) a collection of instances that could be described by the concepts in 
the ontology, iii) a set of additional candidate concepts (and their relationships with 
existing concepts), iv) a set of requirements, v) one or more tasks, and, optionally, vi) 
four additional parameters defining user preferences. It then finds the combination of 
candidate concepts that generates the representation of the instances which performs 
best on the given tasks by first searching in the space of four parameters and then 
applying a variation of Recursive Feature Elimination [31]. Finally, it returns: i) a new 
version of the ontology that complies with the input requirements and effectively 
supports the relevant tasks, and ii) a number of statistics that allow users to assess the 
effect of their preferences (e.g., privileging conservative or novel concepts) on the 
tasks.  



 

In the PMC scenario, the input ontology is the portion of PMC covering the field of 
Computer Science, while the instances are the metadata of books published by SN in 
recent years and tagged with PMC concepts. The set of candidate concepts was built by 
mapping the PMC concepts that needed to be enriched to relevant concepts in CSO and 
then selecting all their sub-concepts, as discussed in Section 2. The mapping was done 
semi-automatically by generating candidate mapping with statistical heuristics from 
Klink-2 [22] and then revising them with the help of SN editors, as described in [2]. 
This operation yielded 2,451 candidate concepts. 

The POE framework is structured in two main steps: 
Parameter Optimization. It tests different combinations of four parameters (using 

grid search) to weigh the candidate concepts. For each combination, it produces an 
ontology that complies with the requirements, it annotates the instances with it, and it 
measures the performance of this representation on the tasks. Finally, it returns a ranked 
list of parameter combinations.  

Recursive Concept Elimination. It uses the best parameter combination from 
previous steps to generate an ontology and applies on it a variation of the Recursive 
Feature Elimination to iteratively eliminate the least important concepts, until the 
desired number of concepts is reached.   

 

POE allows users to set three kind of requirements: 1) the maximum number of 
concepts in the ontology, 2) the minimum number of concepts in a branch, and 3) the 
maximum number of concepts in a branch. Being able to control the dimension of 
branches is important to produce structurally balanced ontologies. POE also allows the 
users to define or restrict (within a range) four parameters that control the ranking of 
the candidate concepts. 

POE can be used with any task that uses an ontology-derived representation of the 
instances and whose performance can be evaluated according to an objective metric. In 
particular, in the current prototype we support four tasks: instance tagging, similarity 
computation, generation of recommendations, and data clustering.  

In what follows, we will first discuss the basic functions of POE, i.e., the generation 
of an ontology from a set of parameters (Section 4.2), and the evaluation of a ontology 
on a task (Section 4.3). We will then address the two main steps of the POE framework 
that employ these functionalities: parameter optimization in Section 4.4, and Recursive 
Concept Elimination in Section 4.5.  

4.2 Topic Ranking 

In this phase, we consider the task of selecting a number of concepts to update an 
ontology as a ranking problem, coherently with the state of the art (e.g., [11, 14, 15,  
16]). We thus want to assign a weight to every concept and then update the input 
ontology with the first n concepts that comply with the requirements.  

A typical way to do so is assessing a concept importance according to how frequently 
it is represented in the instances. Intuitively, a concept that is often needed to describe 
the instances should receive a higher weight than a rarer one. Indeed, previous literature 
showed that term frequency and TF-IDF perform quite well on this task [14, 15]. We 
believe however that is possible to have a more comprehensive treatment of this 
challenge by taking in consideration a number of additional factors. In particular, here 



 

we consider four dimensions that can influence the value of a concept in the new 
ontology and the strategy for mapping it to the instances. 

Semantics. As already mentioned, a purely syntactical solution to weigh concepts is 
to use the frequency of their label in the instances. For example, given the concept 
temporal logic, we could weigh it according to the number of books that contains in the 
title, abstract, or keyword field the string “temporal logic”. Alternatively, we could take 
a more semantic approach and associate to a concept each instance that contains the 
label of the concept or of any of its sub-concepts. For example, we could map the 
concept temporal logic to each book that contains one of the alternative labels (e.g., 
“temporal logics”) or sub-concepts (e.g., “temporal operators”) in the CSO ontology.  
This technique has been applied with good results in a variety of fields, such as 
automatic classification of proceedings [2], technology forecasting [6], recommender 
systems [3,13], community detection [5], and others. 

Temporal dimension. It is also useful to consider when the instances were 
produced. In the scenario of academic publishing, considering recent instances would 
prioritise the trendiest research topics, which may keep growing and become more 
popular in the future. However, focusing too much on recent instances, may exclude 
some significant historical concepts that are still important and may risk prioritising 
concepts that are experiencing only a transient burst of popularity.  

Internal versus external instances. The instances can either derive from the 
catalogue of the organization that has adopted the ontology (e.g., SN books in Computer 
Science) or they could be generic ones (e.g., all available books in Computer Science). 
In the first case, the selected concepts will acquire the same biases of the internal 
dataset. The resulting ontology will be tailored to those specific instances, but may 
exclude significant concepts that are currently under-represented in the catalogue. 
Therefore, a company that wants to expand its catalogue and cover new fields may 
prefer to consider all available instances, while one that is not interested in doing so, 
may decide to produce a more internally-tailored ontology.  

Structural considerations. Considering only the weight of single concepts may 
exclude some concepts that are less represented in the instances, but act as good 
branching point in the ontology and keep the structure easy to browse and explore. 
Therefore, in some cases it may be advisable to include concepts that are useful from a 
structural standpoint, even if they appear less frequently in the instances.  

 

We believe that it is useful to take in consideration each of these dimensions when 
ranking concepts. Therefore, POE takes as input four parameters that can be tuned by 
the user or optimized on a certain task: 
• a (0-1). It controls whether POE uses the syntactic method, the semantic method, 

or a combination of the two for mapping concepts to instances. If a=0, it will use 
only the label of a concept, with a=1 it will consider all the sub-topics, otherwise 
it will use a weighted average.  

• 𝜷 (0-1). It controls whether the weight will be computed only on instances from an 
internal dataset or if it will consider also external entities. If 𝛽=0, POE will use 
only the internal instances, with 𝛽=1 only external ones, otherwise it will use a 
weighted average.  

• 𝜸 (0-1). It modulates the importance of the most recently created instances on the 
weight. If 𝜸=0, POE will weight more recent instances, with 𝜸=1 the time 
dimension will not matter, otherwise it will use a weighted average.  



 

• d (True, False). It controls whether POE will try to recover structurally important 
concepts. In the current implementation, a concept is considered structurally 
important if it has at least three sub-concepts that were selected.   

 

The weight of each concept is computed with the following formula. 
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Where 𝑠𝑖, , 𝑠𝑒, , 𝑓𝑖, , 𝑓𝑒,  are respectively, for a given year 𝑦 , the semantic 
frequency in the internal dataset, the semantic frequency in the external dataset, the 
syntactic frequency in the internal dataset, and the syntactic frequency in the external 
dataset; f and l are the first and last year of the analysed period; and 𝑤, =
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After ranking the concepts, POE selects the first n concepts that comply with the 

input requirements. The POE framework can adopt any kind of requirements that can 
be automatically verified by analysing the set of candidate concepts. In the current 
prototype we take in consideration the minimum and maximum number of concepts for 
each branch. POE enforces this requirements by first populating each branch with the 
minimum number of concepts and then inserting the remaining concepts in the branch 
that are still available until the maximum number of concepts is reached. If d is true, 
POE also checks for structurally important concepts and inserts them in place of the 
ones with lowest weights. Finally, it creates a new version of the ontology which 
incorporates the selected concepts. 

It is also possible to define a list of invalid topics that will not be considered during 
the selection phase. This option will be used during the Recursive Concept Elimination 
(Section 4.5) to exclude topics that do not perform well on the tasks.     

The approach described in this section can be used on its own in alternative to 
generic methods [14, 15]. The main advantage is that it allows users to explore the 
space of solutions, possibly with the support of domain experts, and understand how 
different combination of parameters impact on the resulting ontology.  However, it is 
difficult even for human experts to assess how a new ontology will affect applications. 
For this reason, we want to take a further step: evaluate the alternative ontologies on 
the input tasks and suggest the one that yields the best performance.  

4.3 Evaluating a Candidate Ontology on a Task 

POE evaluates an ontology on some computational tasks by i) using the ontology for 
generating a representation of the instances, ii) running the input tasks on this 
representation, and iii) evaluating the performance with the relevant metrics. The 
instances are represented as a vector in which the elements correspond to the concepts 
in the ontology and the values weigh the importance of a concept. In the case of PMC, 
we used the Smart Topic API [13] for representing books as a vectors of research topics 
in which each topic is assigned a value equal to the number of chapters in which it 
appears. This is a convenient representation that can support several tasks. The Smart 
Topic API is a service developed in collaboration with Springer Nature for tagging 
publications with ontology concepts. It is described in details in [13, 2] 

While some tasks (e.g., instance tagging) can be evaluated using simple metrics (e.g., 
percentage of instances covered), others require a ground truth. For instance, evaluating 



 

the performance of a clustering algorithm would usually require a correct set of clusters 
to compare against. In some cases, such as in the PMC scenario, it is quite expensive 
to produce a specific gold standard for each task. Therefore, we address this issue by 
adopting a ground truth ontology that includes all candidate concepts and can be used 
with every task. The intuition is that we want to select a candidate ontology including 
no more than n concepts that would perform as well as possible as the full ontology. In 
the case of PMC, we want to produce an ontology of about 120-200 concepts that can 
perform as closely as possible to the version which includes all 2,451 candidate 
concepts from CSO. In the following, we will refer to the candidate ontology as Oc and 
to the full ontology, which serves as ground truth, as Of. 

It is important to note that if the task in consideration is sensitive to irrelevant or 
redundant features, the ground truth ontology needs to contain valid concepts and to 
have been previously evaluated. This is indeed the case with CSO, which was 
previously tested on several tasks [24], including automatic tagging of scientific 
publications [1], recommendation generation [2], clustering [5], and technology 
forecasting [6]. Alternatively, we suggest to pre-filter the candidate concepts [16] or to 
generate a task-specific gold standard.  
The current POE prototype implements four tasks that were developed for the PMC 
scenario. The implementation of a new task is straightforward since it simple requires 
to define a representation of the instances, run the task on them, and evaluate the results 
with a relevant metric. If the input includes several tasks, their overall performance is 
computed as the average of the resulting metrics. 
We will now discuss these tasks and their evaluation.  

4.3.1 Instance Tagging  
As first task, we consider the automatic tagging that associates each instance to a vector 
of concepts (via the Smart Topic API [13]). The candidate ontology should enable to 
generate a relatively granular representation of all the instances. Therefore, we evaluate 
this task by computing the percentage of instances that are covered by the ontology. 
Naturally, the definition and quality of the coverage varies according to the scenario 
and the domain. In the case of PMC, it is important to associate each book to a minimum 
number of topics, so that they can be browsed and searched with a good granularity. 
Furthermore, the main topics have to be fairly representative and not appear only in few 
chapters. We thus consider covered a publication that is associated with at least three 
concepts that are present in at least three chapters. 

4.3.2 Similarity Computation 
Computing the similarity of a set of items is a common task that supports more complex 
tasks such as record linkage, clustering, and so on. We evaluate this task by computing 
the cosine similarity of each couple of instances according to both Oc and Of, and then 
calculating their mean root-mean-squared error.  
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Where cos(𝑣?,] 𝑣X]) is the cosine similarity between vectors 𝑣?] and 𝑣X] , 𝑐RT  is the vector 
of instance i produced with the candidate ontology, 𝑓RW  is the vector of instance i 
produced with the full ontology, and 𝑛 is the total number of instances. When the result 



 

is near 1 the two ontologies are yielding similar results and thus the candidate ontology 
is performing well.  

4.3.3 Generation of Recommendations 
Today several recommender systems use ontologies for enhancing semantically the 
representation of items or users [3]. In particular, content-based recommenders use 
feature representations of items to suggest other items that possess similar 
characteristics. This is the case of Smart Book Recommender [13] which suggest SN 
books relevant to a certain conference.   

We generate for each instance, say I, a ranked list of recommendations composed by 
the 100 instances most similar to I, according to both Oc and Of. This is realized by 
computing the cosine similarity of the vector representations derived from the two 
ontologies. We then assess the agreement of the lists produced by the two ontologies 
using the Spearman's rank correlation coefficient, a standard metric for evaluating 
recommender systems. The Spearman’s coefficient between two variables equals to the 
Pearson correlation between the rank values of those two variables, and it is used when 
it is important to compare the order of items in a list. It varies between -1 and 1, with 1 
(or -1) indicating that the two list exhibit a perfect correlation and 0 indicating that the 
order of two list is not correlated at all. The performance of Oc on this task is measured 
according to the following formula: 

𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑟_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
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Where 𝜎`ab and 𝜎`1b  are the standard deviations of the ranked list of items according 

to Oc and Of, and 𝑐𝑜𝑣(𝑟𝑐[, 𝑟𝑓[) is the covariance of the ranked lists. 

4.3.4 Clustering  
Cluster analysis is a powerful tool for exploring trends, generating analytics, and 
informing marketing and political decisions. We first cluster the instances according to 
both ontologies by using the K-Means++ algorithm and then compare the results with 
the Rand index, which is a measure of the similarity between two sets of clusters. The 
Rand index varies between 0 and 1, with 1 indicating that the data are clustered in the 
same way and 0 indicating that the cluster sets are completely dissimilar.  

 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔__𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑎[ + 𝑏[	

g𝑛2i
 

Where  𝑎[ is the number of pairs of instances that are in the same cluster both in the 
cluster set of Oc and in the cluster set of Of, and 𝑏[ is the number of pairs that are in 
different clusters.  

4.4 Parameter Optimization 

Parameter optimization is the first step of the POE approach. In this phase, POE 
executes a grid search on the space of the four parameters described in section 4.2, 
produces a candidate ontology for every combination of parameters, and ranks them 
according to their performance on the tasks, as illustrated in section 4.3. The ontology 
that performs best is the advisable solution in the space of parameters. 



 

 The result of this phase can be used for exploring the space of solutions and 
assessing the effect of the parameters on the ability of an ontology to perform certain 
tasks. A simple way to do so is testing if there is any correlation between a parameter 
and the performance. For instance, Figure 1 shows the relation between two parameters 
and the performance obtained on the generation of recommendations task (Section 
4.3.3) when representing 718 SN books in the 2012-2014 period with the ontology 
produced by including 40 additional topics to PMC. a is directly correlated with the 
recommender performance, yielding a Pearson correlation coefficient of 0.69 
(p<0.0001). It thus seems that mapping instances with the semantic approach works 
better when optimizing the ontology for this task. Although, it is interesting to notice 
that the best results are obtained when 0.5≤a≤0.75, therefore a purely semantic 
approach may be counterproductive. Conversely 𝛽 exhibits a mild inverse correlation 
with the performance, yielding a Pearson correlation coefficient of -0.36 (p<0.0001). 
This indicates that preferring the instances from the internal dataset tends to produce a 
superior result on this task.  

 

 
Figure 1. Performance on the generation of recommendations task in function of a and	𝛽. 

4.5 Recursive Concept Elimination 

The previous step can outperform some more basic methods (see Section 5), but still 
suffers from two main limitations. First, the optimization was limited to the space of 
parameters, therefore a better solution may exist outside this space. Secondly, the 
typical strategy of assigning weights to single concepts does not take into consideration 
concept synergy. Conversely, it is possible that even if concept C1 has lower weight 
than C2, its combination with the other concepts would yield a better overall 
performance. For instance, two concepts may be redundant (e.g., “Linked Data” and 
“RDF”), therefore after one of them is selected, adding also the other would yield only 
a marginal advantage.  In this section, we introduce a technique that addresses both 
limitations. 

A comprehensive search outside the space of parameters is computationally 
intractable since it would need to test all possible permutations. For this reason, 
performing feature selection in large dimensional input spaces usually involves greedy 
algorithms. An approach to address this issue in the field of machine learning is the 
Recursive Feature Elimination algorithm [31], often used with Support Vector 
Machines and other classifiers. This approach iteratively constructs a model with a set 



 

of features, computes their weights, and removes the least important features, until the 
goal is reached. A crucial advantage of this method is that it takes into account the 
feature synergy and preserves features whose usefulness requires other features. 
We thus adopted a similar procedure, that we label Recursive Concept Elimination 
(RCE), as the second step of POE. RCE generates an ontology composed of n concepts 
by applying the following steps: 

1. It produces an ontology with m concepts (where m > n) using the best set of 
parameters detected in the first phase (Section 4.4). If no ontology of m 
concepts complies with the requirements, these are temporarily relaxed.  

2. It ranks the concepts according to their importance for the tasks by generating 
m-1 representations of the instances, each of them lacking a concept, and 
evaluating them. Each concept is given a weight equal to 1 minus the metric 
yielded by the evaluation of the representation from which it is absent [32]. 

3. It discards the j concepts with the smaller weights and returns to step 2, until it 
reaches n concepts. Finally, it returns the optimized ontology and the ranked 
set of parameters from the previous phase. 

While it is technically possible to directly apply RCE to the full set of candidate 
concepts, it would not be computationally feasible in most cases. Using the set of best 
parameters to create an initial ontology of m concepts allows us to obtain a tractable 
number of RCE iterations.  
A further advantage of this method is that it allows users to understand exactly why a 
concept is there and in which way it relates with the dimensions discussed in section 
4.2 and with its performance on a task. Indeed, the ranking order will still be consistent 
with the set of parameters selected in the first phase and the absence of a concept from 
the original ranked list would be due to its insufficient performance with regard to the 
task. The user is thus able to review this information and test different solutions by 
modulating the input parameters. 

5 Evaluation 

We tested POE on the task of evolving the PMC taxonomy and used as instances a 
dataset of Springer Nature publications including 1,218 books in the 2012-2016 period. 
The evaluation had three aims. First, we wanted to compare POE versus alternative 
baselines from the state of the art, such as the TF-IDF method adopted in Text2Onto 
[14] and SPRAT [15]. Secondly, we intended to investigate whether optimizing for a 
certain task would also yield good performance on related ones. Finally, we intended 
to assess the effect of training POE on multiple tasks at once.   

We thus compared the performance of the ontologies produced by different 
approaches in supporting the four tasks implemented in POE: automatic tagging (Task 
1), similarity computation (Task 2), generation of recommendations (Task 3), and 
clustering (Task 4). In addition to the SN dataset, we adopted the Rexplore dataset [23] 
as the external source from which to derive statistics, such as the concepts frequencies 
described in Section 4.2 and TF-IDF. The Rexplore dataset is more generic than the SN 
one and contains 16 million research papers in the field of Computer Science from a 
variety of academic publishers.  

We focused on the evolution of the branches under five concepts of the original PMC 
taxonomy: I21017-Artificial Intelligence (incl. Robotics), I23050-Computational 



 

Biology/Bioinformatics, I14050-Systems and Data Security, I14029-Software 
Engineering, and I13022-Computer Communication Networks. These concepts were 
mapped to nine CSO concepts: Artificial Intelligence, Robotics, Bioinformatics, 
Cryptography, Access Control, Software Engineering, Software Design, Computer 
Networks, and Wireless Telecommunication Systems. Finally, their 2,451 sub-topics 
were selected as candidate concepts.  
We tested fourteen alternative approaches: 
• Term Frequency in the SN dataset (FS), ranking concepts according to their 

frequency in SN dataset. 
• Term Frequency in the Rexplore dataset (FR). 
• TF-IDF in the SN dataset (TS) (as in [14, 15]), considering the instances under the 

five branches for the TF and all the instances for the IDF.  
• TF-IDF in the Rexplore dataset (TR).  
• The parameter optimization in POE (Section 4.4), yielding the ontology produced 

from the best combination of parameters for instance tagging (P1), similarity 
computation (P2), generation of recommendations (P3), clustering (P4), and all 
these tasks together (P5). 

• The full POE framework returning an ontology optimized for instance tagging 
(POE1), similarity computation (POE2), generation of recommendations (POE3), 
clustering (POE4), and all these tasks together (POE5). 

We simulated a realistic situation by training the approaches and computing all the 
statistics (e.g., TF-IDF) in the 2012-2014 period and then evaluating their performance 
in the 2015-2016 period. In order to do so, we split the instances dataset in a training 
set of 718 books and a testing set of 500 books.  

We then generated, for each approach, four evolved versions of PMC that included 
20, 40, 60, and 80 new concepts and compared their performance using the metrics 
described in Section 4.3. The minimum and maximum number of concepts allowed for 
each of the five branches was set respectively to 4 and 25. RCE was performed by 
setting m=n+20 and eliminating one concept at each iteration. POE was implemented 
in Python and ran on a 2.40 GHz Intel Xeon processor taking between 1 (POE1) and 8 
(POE5) hours depending on the task. The computing time is usually not an issue for 
this kind of task, but if needed it could be cut down by parallelising the parameter 
optimization and the RCE phase. The existence of statistical differences between the 
two approaches was explored with the non-parametric Wilcoxon’s signed rank test for 
matched variables. 
The material produced during the evaluation and further details about the settings of 
the approaches are available at http://rexplore.kmi.open.ac.uk/POE. 

Table 1 and Table 2 show the performance of the approaches on the four tasks. The 
full version of POE optimized for a task (e.g., POE1 for task 1) obtained the best 
average result for the task in every case, outperforming both parameter optimization 
(p=0.002 with Wilcoxon’s rank test), and the other baselines (p=0.0004).  It also 
obtained the best result for each concept number, with the exception of few cases in 
which it was outranked by a different version of POE optimized for a similar task. 
POE5, the version optimized on all tasks at once, proved to be a good compromise by 
yielding on each task a performance marginally inferior or equal (in case of task 3) to 
the version of POE specifically optimized for the task (p≥0.10). In addition, the 



 

parameter optimization step optimized for a task (e.g., P1 for task 1) yielded better 
results than FS, FR, TS, TR on that same task (p=0.0004).   

Furthermore, all the approaches optimized on one the four tasks (including POE5) 
performed significantly better (p<0.0001) than the ones that simply used statistical 
techniques. Therefore, it seems that optimizing for one of these tasks holds benefits 
also on the other ones. 
 

Table 1. Performance in task 1 (instance tagging) on the left and task 2 (similarity computation) 
on the right. In bold the best results. In light grey the version of POE optimized for the task. 

 
 

Table 2. Performance in task 3 (generation of recommendations) on the left and task 4 (clustering) 
on the right. In bold the best results. In light grey the version of POE optimized for the task. 

 
 

POE3, POE2, and POE5 yielded very good results on all tasks, obtaining the highest 
average performances, respectively 0.960, 0.959 and 0.959. Interestingly, the 
performance of POE2 and POE3 on task 4 (clustering) was only slightly inferior to 
POE4, while the performance of POE4 on task 2 and 3 was not as good.  This is 
probably due to the fact that both task 2 and task 3 concern the similarity between 
instances, which is also used by K-Means++ for producing the cluster set.   



 

6 Conclusions 

We presented the Pragmatic Ontology Evolution (POE) framework, a novel approach 
that selects concepts to be included in an evolving ontology in accordance with user 
requirements and their impact on computational tasks. The evaluation showed that the 
full version of POE outperforms both parameter optimization (p=0.002) and the other 
baselines (p=0.0004).  

While POE was initially conceived in the context of tackling a concrete real-world 
ontology evolution problem, the approach is generally applicable and opens up many 
interesting avenues of work. In particular, we intend to apply POE on different kinds 
of ontologies and computational tasks to derive some useful guidelines on how to 
balance users and application needs. We also intend to further enrich POE by allowing 
it to handle more complex candidate changes, involving different kinds of semantic 
relationships. Finally, on the technology transfer side, we will continue our 
collaboration with Springer Nature, with the aim of supporting its deployment within 
the editorial team, thus providing a powerful and user-friendly solution to facilitate the 
process of maintaining and evolving their editorial ontologies.  

Acknowledgements 

We would like to thank Springer DE for providing us with access to their large 
repositories of scholarly data. 

References 

1. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: A survey. 
In Ontologies (pp. 79-113). Springer US. (2007) 

2. Osborne, F., Salatino, A., Birukou, A., Motta, E.: Automatic classification of springer 
nature proceedings with Smart Topic Miner. In International Semantic Web Conference 
(pp. 383-399). Springer, Cham. (2016) 

3. Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based recommender systems. In 
Handbook on ontologies (pp. 779-796). Springer, Berlin, Heidelberg. (2009) 

4. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In Data 
Mining, 2003. ICDM 2003. IEEE. (2003) 

5. Osborne, F., Scavo, G., Motta, E.: Identifying diachronic topic-based research communities 
by clustering shared research trajectories, Extended Semantic Web Conference 2014, 
Crete, Greece. (2014) 

6. Osborne, F., Mannocci, A., Motta, E.: Forecasting the Spreading of Technologies in 
Research Communities, K-CAP 2017, Austin, Texas, USA. (2017) 

7. Zablith, F., Antoniou, G., d'Aquin, M., Flouris, G., Kondylakis, H., Motta, E., Plexousakis, 
D., Sabou, M.: Ontology evolution: a process-centric survey. The knowledge engineering 
review, 30(1), pp.45-75. (2015) 

8. Stojanovic, L.: Methods and tools for ontology evolution. (2004) 
9. Klein, M., Noy, N.F.: A component-based framework for ontology evolution. In Workshop 

on Ontologies and Distributed Systems at IJCAI (Vol. 3, p. 4). (2003) 
10. Noy, N., Chugh, A., Liu, W., Musen, M.: A framework for ontology evolution in 

collaborative environments. In Proceedings of the 5th International Semantic Web 
Conference (ISWC-06), Athens, GA, USA, 544–558. (2006) 



 

11. Zablith, F.: Evolva: a comprehensive approach to ontology evolution. In Proceedings of 
the PhD Symposium of the 6th European Semantic Web Conference (ESWC-09), 
Heraklion, Greece, 944–948. (2009) 

12. Ristoski, P., Paulheim, H.: Semantic Web in data mining and knowledge discovery: A 
comprehensive survey. Web semantics: science, services and agents on the World Wide 
Web, 36, pp.1-22. (2016) 

13. Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-Based 
Recommendation of Editorial Products, International Semantic Web Conference 2018, 
Monterey, CA (USA). (2018) 

14. Cimiano, P., & Völker, J.: Text2onto. In International conference on application of natural 
language to information systems (pp. 227-238). Springer, Berlin. (2005) 

15. Maynard, D., Funk, A., Peters, W.: SPRAT: a tool for automatic semantic pattern-based 
ontology population. In International conference for digital libraries and the semantic web, 
Trento, Italy. (2009) 

16. Novacek, V., Handschuh, S.: Semi-automatic integration of learned ontologies into a 
collaborative framework. (2007) 

17. Huang, Z., Stuckenschmidt, H.: Reasoning with multi-version ontologies: A temporal logic 
approach. In International Semantic Web Conference (pp. 398-412). Springer. (2005) 

18. Xuan, D.N., Bellatreche, L., Pierra, G.: A versioning management model for ontology-
based data warehouses. In International Conference on Data Warehousing and Knowledge 
Discovery (pp. 195-206). Springer, Berlin, Heidelberg. (2006) 

19. Wang, Y., Liu, X., Ye, R.: Ontology evolution issues in adaptable information management 
systems. In e-Business Engineering, 2008. ICEBE'08. IEEE International Conference on 
(pp. 753-758). IEEE. (2008) 

20. Liang, Y., Alani, H., Shadbolt, N.: Changing ontology breaks queries. In International 
Semantic Web Conference (pp. 982-985). Springer, Berlin. (2006) 

21. Kondylakis, H. and Plexousakis, D.: Ontology evolution: assisting query migration. In 
International Conference on Conceptual Modeling (pp. 331-344). Springer, Berlin. (2012) 

22. Osborne, F., Motta, E.: Klink-2: integrating multiple web sources to generate semantic 
topic networks. In International Semantic Web Conference (pp. 408-424). Springer. (2015) 

23. Osborne, F., Motta, E., Mulholland, P.: Exploring scholarly data with Rexplore. In The 
Semantic Web–ISWC 2013 (pp. 460-477). Springer Berlin Heidelberg. (2013) 

24. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The Computer 
Science Ontology: A Large-Scale Taxonomy of Research Areas, International Semantic 
Web Conference 2018, Monterey, CA (USA). (2018) 

25. Klein, M.C. and Fensel, D.: Ontology versioning on the Semantic Web. In SWWS (pp. 75-
91). (2001) 

26. Sellami, Z., Camps, V., Aussenac-Gilles, N.: DYNAMO-MAS: a multi-agent system for 
ontology evolution from text. Journal on Data Semantics, 2(2-3), pp.145-161. (2013) 

27. Sabou, M., Fernandez, M., Motta, E.: Evaluating semantic relations by exploring 
ontologies on the semantic web. In International Conference on Application of Natural 
Language to Information Systems (pp. 269-280). Springer, Berlin, Heidelberg. (2009) 

28. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology evolution over 
the semantic web. Information and Software Technology, 51(1), pp.83-97. (2009) 

29. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science ontologies and 
mappings. In International Workshop on Data Integration in the Life Sciences (pp. 11-27). 
Springer, Berlin, Heidelberg. (2008) 

30. Groß, A., Hartung, M., Prüfer, K., Kelso, J. and Rahm, E.: Impact of ontology evolution 
on functional analyses. Bioinformatics, 28(20), pp.2671-2677. (2012) 

31. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification 
using support vector machines. Machine learning, 46(1-3), pp.389-422. (2002) 

32. Kohavi, R., John, G.H.; Wrappers for feature subset selection. Artificial intelligence, 97(1-
2), pp.273-324. (1997) 


